
Cloud cost unit economics

WHITEPAPER

Dan Bode
Sr. Director of Cloud
Advisory

ust.com

https://www.ust.com/

Table of contents
Overview 1

It’s all about the data 1

Tracking cloud account costs 1

Average cost per customer 2

Observability data 3

Costs per customer over time 4

Shared services 5

External SaaS (Software as a Service) costs 6

Not all customers are created equally 7

Other types of cost 7

Conclusions 8

References 9

CLOUD COST UNIT ECONOMICS 1

The rise of cloud computing threw a wrench into how companies understand
their profitability. On-demand pricing, real-time variable costs, multi-tenancy,
complex pricing models, and hidden costs all require a new way of thinking about
spending. This is made worse by the fact that in many organizations these costs are
abstracted from the business and controlled by IT.

Whether you are a global technology company or a small family-owned
convenience store, it is imperative to understand the per-unit costs for every
item that you sell. This is unit economics. Understanding unit economics allows a
business to better predict gross profit margins and break-even points, which are
critical to making good business decisions.

Cloud Cost Unit Economics, part of the six principles defined by the FinOps
Foundation, ensures that we can drive cloud spending directly to the business value
that it creates. This can de-mystify cloud spend and let an organization realize the
full value and business advantage that cloud computing promises.

To best understand unit costs, we need to generate as much data related to cost
with as much context as possible. This data must be mapped back to the part of the
organization that generated the cost, which could be a customer-facing application
or an internal shared service. The process of identifying an enterprise’s technical
products and what capabilities those services provide is part of setting up an
internal Service Catalogue. For this paper, I will assume that work has been done
and that all cloud spending can be attributed to a single ProductId.

This cost data and context are imported into a business intelligence tool where
analysis can be performed. Since cloud cost information is stored as time-series
data, we should consider what other time-series data we can correlate to costs.

Partitioning each cloud account to a single ProductId is much simpler than
figuring out how multiple products provisioned in the same account share
costs. However, managing more accounts requires that we have automation
in place for not only creating accounts, but also ensuring that all resources in
each account are properly tagged with the relevant ProductId.

NOTE: While attributing each cloud account to a single ProductId may not be
the right solution for each organization, it is worth considering as a principle
since it is the easiest way to associate cloud costs. It also simplifies cloud
account authorization and aligns with the goal of least privileged access
(which is slightly out of scope but still worth mentioning).

Overview

It’s all about the data

Tracking cloud account costs

https://en.wikipedia.org/wiki/Time_series

CLOUD COST UNIT ECONOMICS 2

Now that all cloud accounts emit cost data associated with a single product, we
can start solutioning for Cloud Cost Economics. For this example, we will assume
a customer-facing product running in AWS that we will label as ‘A’ and want the
cost per customer as our unit cost. To calculate the cost per customer, we need the
number of customers and the total cloud spend for our ProductId. The following
tables show our cloud costs for all accounts associated with our product and
customer counts.

The equation below shows a one-time calculation based on the unit measurement
for customers.

(500 + 1400 + 1200) / 80 = 38.75 per customer

While a one-time cost calculation is a great starting point, it has limitations:

• It does not inform us if our cost per customer increases/decreases as we scale
the business

• It does not consider cloud cost for shared services that product A depends on

• It assumes that each customer is contributing to cost equally

Average cost per customer

ProductId environment April cloud costs

A Dev $500

A QA $1400

A Prod $1200

A total $3100

ProductId Number of customers in April

A 80

CLOUD COST UNIT ECONOMICS 3

Call graph

SpanTrace

Time

Trace data

A

B

D

Service A

Service B

Service D

C

If you have not set up central observability in your organization, consider it part
of your work toward Cloud Cost Unit Economics. It may even be easier than you
expect. Tools like Istio and eBPF are evolving in the observability ecosystem to
perform auto-instrumentation at the infrastructure layer (meaning that you can
implement it once in your infrastructure layer without making code changes).
Prometheus is becoming a standard format for creating metrics for many language
ecosystems, rapidly increasing the number of existing metrics without requiring
development efforts.

Metrics and Distributed Tracing are two types of observability data published from
a running application to an external data source as time-series data. Because
metrics, trace, and cloud cost data are time-series and allow arbitrary labels to
be set (like ProductId), observability data can be joined with cost data to provide
additional context.

Metrics are time-series data published directly from application code. Each point
(i.e., point in time) has a name, value, value type (counter, gauge, histogram)
and arbitrary labels. For more details on metrics, I recommend looking at open
telemetry since it is evolving as the industry standard.

Distributed Tracing is built on a set of standard headers that are propagated
through service calls to construct a call graph. It provides us with a way to know, for
each request, how the request was routed through multiple systems and how much
time it spends in each system. Distributed Tracing has two parts:

Span – A unit of work where a single service has processed a transaction. Each
span has a link to its parent span and a set of labels that can be assigned to it. If a
span does not have a parent, it is the originating request.

Trace – A collection of spans.

In the diagram below, the left side shows a call graph showing how requests flow
through multiple services. The right side shows how that data is expressed via
spans and traces. You can see how each span measures the time spent to fulfill the
requests in each service.

Observability data

Service C

http://If you have not set up central observability in your organization, consider it part of your work toward Cloud Cost Unit Economics. It may even be easier than you expect. Tools like Istio and eBPF are evolving in the observability ecosystem to perform auto-instrumentation at the infrastructure layer (meaning that you can implement it once in your infrastructure layer without making code changes). Prometheus is becoming a standard format for creating metrics for many language ecosystems, rapidly increasing the number of existing metrics without requiring development efforts.
https://ebpf.io/
https://opentelemetry.io/docs/specs/otel/metrics/data-model/
https://opentelemetry.io/docs/specs/otel/metrics/data-model/
https://www.w3.org/TR/trace-context/#tracestate-header

CLOUD COST UNIT ECONOMICS 4

Now that we understand how to use observability data to provide context to our
cost data for analysis, we can publish a counter metric to track the number of active
customers. This will help us understand how the number of customers impacts
cloud costs over time. Consider the following cost and metric data.

Costs per customer over time

ProductId Environment Costs

Jan Feb March April

A Dev $200 $300 $400 $500

A QA $200 $800 $1400 $1400

A Prod $400 $800 $800 $1200

A Total $800 $1900 $2600 $3100

ProductId Metric: Number of Customers

Jan Feb March April

A 0 40 40 80

3500 90

3000 80

2500
70

2000

60

1500

50

1000
30

40

500

Jan Feb Mar April

20

10

0
0

40 40

3800

800

1900

2600

0

Customer and costs

Cloud costs Customers

CLOUD COST UNIT ECONOMICS 5

As you can see, there is a correlation between the number of customers and cost
data, but it is not direct. Just a few notes about the data and resulting graph (and
to show how complicated it can be), only some data is directly associated with the
number of customers. In the above example, the costs related to Dev grow as our
number of developers grows, and the costs related to QA grow as the end-to-end
test suite is expanded. This complexity is precisely why I recommend getting the
data into a business intelligence tool where it can be analyzed. For example, if we
wanted to try to predict costs for May (and assume that we can break the numbers
down per hour), we could use linear regression.

So far, we have only looked at cloud costs of the accounts directly tagged with
the ProductId for our customer-facing service. As usual, the reality is more
complicated. It is common for multiple businesses with different cost units to
leverage the same set of shared services. To understand these costs, we need
to visualize our organization’s service topology map to know how traffic flows
across all services. As mentioned, implementing distributed tracing across the
organization allows us to explore that service topology map.

Let us assume that we have implemented distributed tracing across our
organization, and we can see the following service topology map for service A. To
better understand the total cost of service A, we need to understand how it drives
cost into B, C, and D.

Adding this shared service cost to our total for A gives us a more accurate cloud
cost per customer. However, we already have a problem. The owner of Product
E feels he is stuck with a bill that is not proportional to his usage. Why is he
responsible for 1/3 of the costs of B when he is sure he is responsible for less than a
third of the traffic?

Not only does the distributed tracing data show how traffic is routed between
services, it shows you how long each service spent processing each request.
Looking at the data below, you can see a couple of options for how service B might
want to do a chargeback to build a more accurate view of cost, either by number of
requests or total wall clock time spent serving requests.

The easiest way to calculate how much cost A drives
into B and C is to take the total cost of B, C, and D
and then divide them by the total number of services
sending requests to them. Our distributed tracing data
can provide this information.

For example, if service B has three other services calling
it (A, E, and F) and total cloud costs of $900 in April,
then we can assign $300 in cost to each service.

Shared services

A

B

D

C

CLOUD COST UNIT ECONOMICS 6

NOTE: This is just one example of how we can attribute costs that can help
divvy out chargeback. If storage is the main factor driving cost, it makes
sense to chargeback based on proportional use of total storage.

Request data for service B

Calling Service Number Spans from service
Accumulated Time of all Spans (in
seconds)

A 1000 1100

E 910 1500

F 10 20

Although slightly out of scope for cloud costs, external SaaS products can
be significant cost drivers that impact your cost-per-unit calculation. In my
experience, costs related to the storage of logs and metric data can be one of the
biggest expenditures after cloud costs.

To effectively calculate SaaS costs, you should understand how the vendor charges
for usage (egress, storage, query) and ensure that each vendor can associate your
costs back to multiple ProductIds so that you can effectively charge back. Many
vendors have a concept of an organization and a way to create multiple access
tokens within an organization where you can see cost data either per org or per
token. Procurement governance should be in place to ensure that the external SaaS
products you use align with your chargeback strategies required for accurately
dividing costs.

External SaaS (Software as a
Service) costs

CLOUD COST UNIT ECONOMICS 7

While this paper focuses on cloud spending, this is just one of many costs that
should be imported into our business intelligence tool so that the broader picture
of cost can be understood. Other costs that need to be correlated to our ProductId
are:

• Internal/External headcounts

• Data Center costs

• Licensing Costs

• Other Shared Services (Security, Development Tools)

Other types of cost

So far, we can attribute cloud costs, shared service, and external service costs per
technical product. Once we have these costs, we divide them by the number of
customers and attribute the average cost to each. Like other measurements, we
can start by applying the average cost, but we should also ask if there is a more
accurate way to represent costs. Can we find a way to categorize our customers to
determine if they are driving more costs into the system?

By adding customer context to our trace data, we can understand which customers
are sending more requests to our system, the status code for those requests (like,
are they respecting 429 retry headers), and how long each span runs for. This
time-series data can help us build a much more fine-grained understanding of
how individual customers are driving costs. There may be straightforward ways to
categorize customers based on how they drive costs on your system. For example,
customers using the APIs (application interfaces) may drive more cost than those
using the UI (User Interface).

Product Owners use Customer Analytics Tools to supply insights into specific
customer behaviors. It is worth looking at what tools your organization already uses
and if the data generated can be correlated to specific costs. For example, an A/B
test may find that new product features are increasing your cost per unit.

Not all customers are created
equally

CLOUD COST UNIT ECONOMICS 8

Conclusions
Cloud Cost Economics allows a business to attribute its cloud spend
against the business value that it creates with Unit Economics. Unit
Economics is a process where you compare your costs associated with a
particular unit of revenue. It might be cost per transaction, cost per ride, or
even cost per can of soda.

Once you have selected a unit to measure cost against, figure out what
data you can leverage to build the most accurate reflection of cost. The
goal is to get as much correlated data as possible into an analysis tool.
This requires that you know how to attribute costs and build out the most
effective and fair chargeback systems you can.

It is going to be a journey, so think about the easiest way to divide costs
(by taking an average) and how you can improve upon it to be as accurate
as possible. The more accurate you can be, the better and more informed
decisions you can make.

CLOUD COST UNIT ECONOMICS 9

References
https://www.finops.org/wg/introduction-cloud-unit-economics/

https://www.paddle.com/resources/unit-economics

https://prometheus.io/docs/concepts/data_model/

https://opentelemetry.io/docs/specs/otel/metrics/data-model/
https://www.sumologic.com/blog/how-sumo-logic-monitors-unit-economics-to-
improve-cloud-cost-efficiency/

https://www.dashcon.io/2018/agenda/rediscovering-the-hidden-capacity/

https://amplitude.com/blog/startup-fundraising-metrics

https://www.finout.io/blog/what-is-unit-economics

https://www.datadoghq.com/product/cloud-cost-management/

https://www.finops.org/wg/introduction-cloud-unit-economics/
https://www.paddle.com/resources/unit-economics
https://prometheus.io/docs/concepts/data_model/
https://opentelemetry.io/docs/specs/otel/metrics/data-model/
https://www.sumologic.com/blog/how-sumo-logic-monitors-unit-economics-to-improve-cloud-cost-efficiency/
https://www.sumologic.com/blog/how-sumo-logic-monitors-unit-economics-to-improve-cloud-cost-efficiency/
https://www.dashcon.io/2018/agenda/rediscovering-the-hidden-capacity/
https://amplitude.com/blog/startup-fundraising-metrics
https://www.finout.io/blog/what-is-unit-economics
https://www.datadoghq.com/product/cloud-cost-management/

Together, we build
for boundless
impact

For more than 23 years, UST has worked side by side with the world’s best
companies to make a real impact through transformation. Powered by
technology, inspired by people and led by our purpose, we partner with our
clients from design to operation. Through our nimble approach, we identify
their core challenges, and craft disruptive solutions that bring their vision
to life. With deep domain expertise and a future-ready philosophy, we
embed innovation and agility into our client's organizations—delivering
measurable value and lasting change across industries, and around the
world. Together, with over 30,000 employees in 30 countries, we build for
boundless impact—touching billions of lives in the process. Visit us at:

ust.com

© 2023 UST Global Inc.

https://www.ust.com/

